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Abstract. The dynamics of compaction of hard cross-shaped pentamers on the 2D square lattice is
investigated. The addition of new particles is controlled by diffusive relaxation. It is shown that the
filling process terminates at a glassy phase with a limiting coverage densityρrcp = 0.171 626(3),
lower than the density of closest packingρcp = 1

5 , and the long-time filling rate vanishes like
(ρrcp−ρ(t))2. For the entire density regime the particles form an amorphous phase, devoid of any
crystalline order. Therefore, the model supports a stable random packing state, as opposed to the
hard-discs system.

Random filling and compaction processes of systems of hard particles have been of interest
as models for the evolution and structure of liquids, glasses, colloidal suspensions and
monolayers [1–4]. Although these models have been intensively studied for the last three
decades [2], the description of their structure and dynamics still remains an interesting open
question of condensed matter science.

One of the primary difficulties in studying dense random systems is that of determining
whether the system is truly random. Bernal [1] was one of the first to study experimentally
such a system, using Plasticine spheres which were compressed together. His results suggested
the existence of a limiting density, therandom closest packingdensity, which is smaller
than the closest packing density. Following Bernal, many workers have investigated, both
experimentally and numerically, the possibility of random closest packing state in hard-disc
and hard-sphere systems [2–12].

Mechanical compactions [5, 6] and computer densification processes [7] of random
configurations of hard discs show that, asymptotically, polycrystalline textures are formed,
whose limiting density is the density of closest packing of hard discs. These results support the
conjecture of lack of stability for random close packing of hard discs. Numerical simulations
of non-spherical systems of particles (regular pentagons and regular heptagons) are less
conclusive [8]. The simulations suggest that the densification processes terminate at densities
lower than the corresponding densities of closest packing, although small-ordered zones appear
at these densities. In three dimensions, recent computer simulations of hard sphere systems [9]
indicate that the amorphous phase is not stable, and it eventually crystallizes for all densities
above the melting density. These results are in contrast with earlier simulations of Lubachevsky
et al [7] and Speedy [12], that found dynamically stable amorphous configurations of hard
spheres. A recent experimental study on a suspension of hard-sphere-like particles found the
glass to remain stable on earth but to crystallize in the absence of gravity [10].

Another branch of models for generating random configurations are the so-called
‘deposition models’, in which particles are deposited sequentially onto a surface, according to
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some given rule, up to the point where no additional particle can be deposited (the jamming
limit) [4, 13]. Usually, the rule is given in terms of the exclusion shell of a particle, which
determines which sites in the neighbourhood of a given particle are blocked for further
depositions. Alternatively, one may define the model by studying extended particles, with
hard-core interactions. In general, the random sequential absorption (RSA) models produce
dense random systems, but do not have the characteristics associated with systems in which
the particles are free to move. This observation motivated the study of diffusive relaxation in
RSA models.

The formation of monolayers and 2D densification processes [4, 14] are frequently
dominated by the combined effect of irreversible random deposition of extended particles
on a surface (RSA), followed by in-plane diffusion of the deposited particles (RSAD). While
the RSA process results in a jammed state with a characteristic jamming limit densityρr,
depending on the details of the interparticle repulsion [13], in-plane diffusion may correct
non-effective random depositions, thus allowing for the deposition of additional particles and
increasing the density. The structure of the final state is not always obvious. The amorphous
phase may crystallize to a crystalline state or a polycrystalline state with final densityρ(∞)
that equals the density of closest packingρcp. Alternatively, it may retain its amorphous nature
with a characteristic final densityρ(∞) = ρrcp lower than the closest packing density.

The dynamics of 1D RSAD lattice models is well known [15, 16]. In particular, the
coverage densityρ(t) converges via at−1/2 power law behaviour to its closest packing density.
The time dependence of the RSAD process on the 2D square lattice has been investigated
using computer simulations for two exclusion models: nearest-neighbours exclusion(N1),
and nearest-neighbours and next nearest-neighbours exclusion(N2) [17–19]. For both models
the initial amorphous state crystallizes to form ordered regions separated by domain walls.
The long-time filling is performed through a line-by-line migration of domain walls, resulting
in a unification of neighbouring regions. As a result, the long-time dynamics is expected to be
1D-like, and indeed the density converges to the density of closest packing via at−1/2 power
law behaviour. For both models stable random closest packing configurations do not exist, in
accord with the experimental [5,6] and numerical results [7] found for hard-disc systems.

In this paper we present a simple 2D lattice model, which generates a dynamically stable
random phase at a density much lower than the closest packing density. This model clearly
shows the random closest packing effect. The time evolution of a RSAD filling process
on the 2D square lattice is investigated for an exclusion model that extends up to the third
shell of neighbours(N3) (the model is identical to the model of hard-core cross-shaped
pentamers on the square lattice). We show that, in contrast to theN1 andN2 model, the
RSAD process is unable to correct all local non-effective depositions. As a result, theN3

model retains its amorphous nature, and the filling process terminates at a stable density of
random closest packingρrcp < ρcp. This model describes a RSAD process of more complex,
anisotropic objects. Recent experiments have studied the deposition and diffusion of two forms
of cytochrome on bilayer lipid membranes. One should expect to see such glass transitions
for the deposition of non-isotropic proteins.

Our RSAD model is defined as follows. We start with an empty 2D square lattice
containingN = L2 sites, with periodic boundary conditions (L divisible by 5). Particles are
deposited at random on the lattice according to the RSA and exclusion rules. Each deposited
particle fills a lattice site and excludes further deposition on that site and on its 12 nearest-
neighbour sites. We study the limit in which the deposition is infinitely fast compared with the
diffusion, and therefore the jammed state, whose density isρr = 0.139 750(2) [20], is formed
in zero time (the figure in parentheses indicates the uncertainty of the last digit). This limit
is equivalent to a fast cooling of the system. Then in each time step each particle moves, if
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Figure 1. An example of a random closest packing
state obtained by the RSAD process on a 20× 20 lattice
with periodic boundary conditions. Note the ordered
region in the upper part and the stable defects, which are
accompanied by empty sites (coloured white). The density
is 70

400 = 0.175.

possible, with probabilityε/4 from its site to one of its four neighbouring sites. Migration
of a particle is possible only if it does not violate the exclusion rules of the model. After
every movement of a particle, new particles are deposited if possible. Vacancies available for
additional particles may be formed in five sites that are not excluded any more by the diffused
particle. A fruitful motion may result in the deposition of one, or two, or three new particles.

The lattice consists of five sub-lattices that correspond to the five lattice sites covered
by a pentamer. It is convenient to label the sub-lattices by an integern defined byn =
{(x − 2y) modulo 5}, wherex andy are the coordinates of a site (note that the lattice may be
divided into sub-lattices in two different ways). At any stage of the process, the lattice contains
ordered regions, in which the particles are densely packed. Neighbouring regions are separated
by domain walls, which connect sites that are not covered by pentamers. Only particles that
are located close to a domain wall may diffuse to a neighbouring site. A movement of a
particle results in a transfer of the diffused particle from one sub-lattice to another one. In
the RSAD process of theN1 model, the newly added particles are in the same sub-lattice as
the diffused particle. Therefore, the filling process corrects local deficiencies, resulting in the
formation of growing ordered regions. However, for theN3 model, only two sites out of the
five optional vacant sites formed by the diffusion are in the same sub-lattice as the diffused
particle. Therefore, in the case of a fruitful diffusion, the newly deposited particles may be
added in a non-effective way that increases local disorder. Such non-effective depositions may
inhibit additional filling. In addition, local defects generated by inefficient depositions are
much more stable in theN3 model due to the ‘friction’ generated by the non-smooth cross
shape of the pentamers. An example is given in figure 1, which presents a random closest
packing state obtained on a 20× 20 lattice. The state is completely frozen, i.e., no particle
can move. In the upper part of the lattice a large-ordered region can be seen, in which all the
particles are in the same sub-lattice. However, pentamer A (marked in the figure) is an example
of a non-effectively deposited particle. One can easily see that had it been deposited one site
to the right, diffusional relaxation would have resulted in an ordering of its neighbourhood.
However, once it is deposited in its place, the defect generated is dynamically stable.

We have performed numerical MC simulations of the model, studying a periodic square
lattice with lengthL = 1000 sites. The results for the time dependence of the density, averaged
over 1000 MC realizations, are presented in figure 2. The standard deviation in the average
value ofρ(t) does not exceed 3× 10−6 for all t , 0 6 εt 6 5000. Analysis of the long-time
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Figure 2. Coverage density versus time, averaged over 1000 MC realizations (solid curve),
compared with the [2/2] Pade approximant (3) (dashed curve), and to the linear long-time expression
equation (1).

behaviour points out that the limiting density of the RSAD filling process is a stable random
closest packing densityρrcp = 0.171 626(3), clearly lower than the density of closest packing
ρcp = 1

5, confirming the above arguments. The density converges to its limiting value via a
t−α power law, where 0.90 6 α 6 1.15 is consistent with the numerical results. Assuming
α = 1, one obtains the following long-time expression for the density:

ρ(t) = 0.171 626(3)− 0.574(1)

εt
+ O((εt)−2). (1)

The α = 1 assumption implies that the filling rate, dρ(t)/dt , vanishes asymptotically like
(ρrcp− ρ(t))2. It should be recalled that, for bothN1 andN2 models, the density converges to
the density of closest packing via at−1/2, 1D-like, power law behaviour [19], and the filling
rate vanishes asymptotically like(ρcp − ρ(t))3. This difference manifests the difference in
the long-time dynamics of the models. The filling progress at long times is related to the
probability of two vacancies to get in contact. Therefore, the time dependence is the same as
the probability of two independent random walkers to get in contact. For theN1 andN2 models
the asymptotic structure is that of large regions, and the density is increased by movements
of long lines along the domain walls, resulting in a 1D-like diffusive time dependence. In the
present case, however, the asymptotic structure is highly disordered, and the filling progress is
related to a 2D random walk process in which small vacancies combine to generate the place
for an additional particle.

The density gainρ(t) − ρr is given by an expansion in powers ofεt , whose coefficients
are spatial correlation functions at the jamming limit [16]. Using the 1000 MC simulations we
computed the first two coefficients in the power series:

ρ(t)− ρr = 0.009 91(1)εt − 0.004 71(5)(εt)2 + O((εt)3). (2)

The deviation of the second-order approximation for the density, equation (2), from the ‘exact’
(MC) result is less than 5% only for the ultrashort-time limit,εt 6 0.5. At the later stages of
the process we approximate the density by the following [2/2] constrained Pade approximant:

ρ(t)− ρr = 0.009 91

u + 0.4754− 0.005 89/(u + 0.035 81)
(3)
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Figure 3. Correlation functions as a function of time.

whereu = 1/εt . The four coefficients of the approximant (3) are determined by the first two
terms in the short-time expansion (equation (2)) and by the requirement that it fits the long-
time behaviour of equation (1). Alternatively, (2) results from an expansion of (3) in terms
of εt , while (1) results from a long-time expansion of (3) in terms of(εt)−1. In figure 2 the
‘exact’ MC numerical results are compared with the constrained Pade approximant and to the
long-time expression equation (1). The fit between the MC results and the [2, 2] approximant
is excellent for the entire time domain. The maximum relative error, atεt ≈ 20, is of order of
1%. The linear(εt)−1 behaviour is an excellent approximation to the MC results forεt > 200.

The contrast between the ordered texture of theN1 model and the amorphous texture of
theN3 model is reflected in the contrast between their pair correlation functions as well. In the
N1 model the pair correlation functiongj,k(t) (the probability that at timet both sites(0, 0) and
(j, k) are occupied) approaches unity (zero) for even (odd) values ofj +k, via the characteristic
t−1/2 power law. Consequently, the linear size 1 of a typical ordered crystalline region diverges,
in the long-time limit, as

√
εt . However, for theN3 model, the asymptotic values of the pair

correlation functions depend on the position(j, k), thus reflecting its amorphous nature. It is
convenient to measure the size of ordered regions by the position of the change of sign of the
modified pair correlation functionρi,j(t) defined by

ρi,j(t) = (gi,j(t)− ρ(t))/(1− ρ(t)) (4)

where− 1
4 6 ρi,j(t) 6 1. Vanishing of this function means lack of correlation, while negative

values correspond to anti-correlation. Figure 3 presents the time evolution of the modified
correlation functions:ρ2,1(t), ρ4,2(t), ρ5,0(t) andρ6,3(t). All four sites are in the same sub-
lattice as the reference(0, 0) site (see figure 1). At the jamming limit the modified correlation
functions of the sites(4, 2), (5, 0) and (6, 3) approximately vanish, reflecting the lack of
even short-range order fort = 0. At later stages of the processρ4,2(t) andρ5,0(t) increase
monotonically as a function of time to their limiting values. On the other handρ6,3(t)decreases,
although very weakly, with time to its limiting valueρ6,3(∞) = −0.0093(1), indicating that
the site(6, 3) is out of the region built around the site(0, 0).

The average number of particles with smallest possible distance,
√

5 lattice units, from
a given particlenmin(t) = 8g2,1(t) increases fromnmin(0) = 1.912(1) at the jamming limit
to nmin(∞) = 2.824(1) at the random closest packing. This contact number is substantially
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lower than the corresponding contact number of the crystal that equals 4. Furthermore, the
average number of particles at a distance

√
8 depends only weakly on time along the RSAD

process and is about 0.73. This number reflects the probability of a particle to be along a
domain wall.

Our model assumes an infinitely fast deposition rate, namely, the deposition of a new
particle whenever possible. This corresponds to infinite cooling of the system, by suddenly
reducing the activity to zero. A more realistic model should include the effect of finite cooling,
by introducing a finite value for the activity. In that case, deposition of a new particle will occur
with a finite probability. The effect of this modification is limited. The asymptotic structure is
still amorphous, and a random closest packing state is formed. However, the limiting density
increases as the deposition rate decreases.

The lattice gasN3 model is known to undergo a first-order phase transition from a low-
density disordered fluid phase to a high-density ordered crystalline phase [21]. The equation
of state consists of two different branches separated by a density gap, betweenρl ≈ 0.16 and
ρr ≈ 0.19. The random closest packing densityρrcp therefore lies inside the density gap, while
the jamming limit is located in the range of the fluid phase. Thus, at the onset of diffusion, the
system is ergodic, and it is only later that depositions form the glassy phase. One would expect
this glassy phase to occur at a density larger than the fluid transition, and indeedρrcp > ρl .
Since the formation of small ordered regions is sufficient to trap the system in its glassy phase,
the random closest packing occurs right aboveρl , in the co-existence regime, where such small
ordered regions are stable.

In conclusion, a simple lattice model in two dimensions is proposed, which exhibits a
glass transition as a result of fast cooling. The asymptotic state has a well-defined density,
smaller than the closest packing one, which is a manifestation of the so-called random closest
packing. The long-time filling rate vanishes like(ρrcp− ρ(t))2. Spatial correlation functions
are studied as a function of time, and it is shown that, for the entire density regime, the particles
form an amorphous phase devoid of any crystalline order.
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